
Задачи (утверждения), которые надо уметь решать (доказывать) на экзамене/зачете.
В РАБОТЕ !!!
>Теор
минимумЗадачи с
решениямиТипичные
задачиК зачету
экзамену
а) последовательность содержит ровно

б) последовательность содержит ровно m единиц,
в) в последовательности ровно



Решение.
A – начало последовательности никак не зависит от продолжения, поэтому P(A)=1/3
B – Последовательностей, которые начинаются и заканчиваются нулем, 1/9=1/3*1/3 от общего числа последовательностей. Всего таких последовательностей 3^{n-2}. Из них C_{n-2}^{m}*2^{n-m-2} содержат нули (n\geq m+2). Итого P(B)=(1/9)* C_{n-2}^{m}/3^{n-2}.
C – Если выбрать из n C_n^m , то их можно положить равными 1, тогда оставшихся наборов из n-m элементов (n\geq m), составленных из 0 и 2 будет 2^{n-m} штук. Всего требуемых наборов будет C_n^m*2^{n-m} штук. P(C)= C_n^m*2^{n-m}/3^n.
D – нули выбрать можно C_n^{m_0} способами. Из оставшихся n-m_0 элементов единицы можно выбрать C_{n-m_0}^{m_1} способами, а остальными и так будут двойки, т.к. m_0+m_1+m_2=n, так что всего имеем C_n^{m_0} C_{n-m_0}^{m_1} способов. P(D)= C_n^{m_0} C_{n-m_0}^{m_1}/3^n.
а) трёхзначных чисел бывает 9 • 10 • 10 = 900;
б) трёхзначных чисел, все цифры которых различны, существует 9 • 9• 8.
2. Найти количество различных результатов в следующих экспериментах:
а) из алфавита выбирают три разные буквы и составляют слово;
б) из различных ненулевых цифр составляют трёхзначное число;
3. Найти количество различных результатов в следующих экспериментах:
а) из колоды в 36 карт выдают три карты одному игроку;
б) из двадцати учеников класса выбирают троих дежурных.
4. Найти количество различных результатов в следующих экспериментах:
а) пятизначное число составляют из одних нечётных цифр.
б) обезьяна напечатала на машинке слово из десяти букв;
в) составляют слово длиной в 10 символов из нулей и единиц;
5. Найти:
а) количество способов разложить число в сумму
целых неотрицательных слагаемых, если важен порядок следования слагаемых;
б) число возможных результатов подбрасывания двух игральных костей, если кости считаются неразличимыми. То же самое для трёх игральных костей.


2) Сколькими способами можно разместить n неразличимых между собой частиц в N различимых ячейках (ящиках), пронумерованных номерами от 1 до N.
>Теорминимум